6 research outputs found

    Modeling of power electronic systems with EMTP

    Get PDF
    In view of the potential impact of power electronics on power systems, there is need for a computer modeling/analysis tool to perform simulation studies on power systems with power electronic components as well as to educate engineering students about such systems. The modeling of the major power electronic components of the NASA Space Station Freedom Electric Power System is described along with ElectroMagnetic Transients Program (EMTP) and it is demonstrated that EMTP can serve as a very useful tool for teaching, design, analysis, and research in the area of power systems with power electronic components. EMTP modeling of power electronic circuits is described and simulation results are presented

    EMTP based stability analysis of space station electric power system in a test bed environment

    Get PDF
    The Space Station Freedom Electric Power System (EPS) will convert solar energy into electric energy and distribute the same using an 'all dc', Power Management and Distribution (PMAD) System. Power conditioning devices (dc to dc converters) are needed to interconnect parts of this system operating at different nominal voltage levels. Operation of such devices could generate under damped oscillations (instability) under certain conditions. Criteria for instability are examined and verified for a single device. Suggested extension of the criteria to a system operation is examined by using the EMTP model of the PMAD DC test bed. Wherever possible, data from the test bed is compared with the modeling results

    An EMTP system level model of the PMAD DC test bed

    Get PDF
    A power management and distribution direct current (PMAD DC) test bed was set up at the NASA Lewis Research Center to investigate Space Station Freedom Electric Power Systems issues. Efficiency of test bed operation significantly improves with a computer simulation model of the test bed as an adjunct tool of investigation. Such a model is developed using the Electromagnetic Transients Program (EMTP) and is available to the test bed developers and experimenters. The computer model is assembled on a modular basis. Device models of different types can be incorporated into the system model with only a few lines of code. A library of the various model types is created for this purpose. Simulation results and corresponding test bed results are presented to demonstrate model validity

    Simulation of Flywheel Energy Storage System Controls

    No full text
    This paper presents the progress made in the controller design and operation of a flywheel energy storage system. The switching logic for the converter bridge circuit has been redefined to reduce line current harmonics, even at the highest operating speed of the permanent magnet motor-generator. An electromechanical machine model is utilized to simulate charge and discharge operation of the inertial energy in the flywheel. Controlling the magnitude of phase currents regulates the rate of charge and discharge. The resulting improvements are demonstrated by simulation

    Simulation of the Interaction Between Flywheel Energy Storage and Battery Energy Storage on the International Space Station

    No full text
    Replacement of one module of the battery charge discharge unit (BCDU) of the International Space Station (ISS) by a flywheel energy storage unit (FESU) is under consideration. Integration of these two dissimilar systems is likely to surface difficulties in areas of system stability and fault protection. Other issues that need to be addressed include flywheel charge and discharge profiles and their effect on the ISS power system as well as filter sizing for power Ability purposes. This paper describes a SABER based simulation to study these issues

    Functional Recovery of Cholinergic Basal Forebrain Neurons under Disease Conditions: Old Problems, New Solutions?

    No full text
    corecore